
4/5/2006

cfg_control_v20.doc

--
-- DESCRIPTION:
-- This module provides the control signals to operate the serial data
-- stream going to the CPLDS.
--
-- The implemented function codes are:
-- CODE 000 = ADC CONFIGURE
-- CODE 001 = CDS CONFIGURE
-- CODE 010 = DAC CONFIGURE
-- CODE 011 = TEL CONFIGURE
-- CODE 100 = AUX CONFIGURE
--
-- The WRITE_SD signal is used to trigger the serial data stream
-- generation on cfg_ser_out, where the parallel data read from
-- cfg_reg_file will be serialized and sent to the CFG CPLD.
--
-- The ADC_DATA_READY input signal is set by the cfg_ser_in module when
-- there is data ready to be written into cfg_reg_file (in the
-- corresponding "ADC Data" memory location).
--
-- The CFGCLK which goes to the CFG CPLD is generated here from the
-- board clock (SYSCLK), and is turned on only when accessing the CPLD.
-- A backplane generated reset condition (at RST) is passed to
-- cfg_reg_file through CFG_RST only when the register file is selected
-- (CS is on).
--
-- IMPLEMENTATION NOTES:
-- A backplane "write" to an "ADC Data" memory address triggers an ADC
-- access to the channel which corresponds to that memory location. The
-- configuration info that has to be sent to the ADC must have been
-- stored previously in the corresponding address of the "ADC Config"
-- area of the memory. I DO NOT check that something appropriate was written.
--
-- CFGCLK is 1/32 of the board clock (40 Mhz), i.e. 1.25 MHz, to make sure
-- that the slowest components (ADCs) are properly programmed. Max clock
-- for the ADCs is 2 MHz.
-- This is done with the "cfgclk_base" signal.
--
-- In "internal clock mode", the ADC takes a maximum of 15us to complete
-- the conversion, after the last bit of the control byte has been shifted
-- in. During this time, SCLK must remain low. At a period of 25ns, a
-- minimum waiting time of 600 SYSCLK cycles is required.
-- For simplicity, the waiting time is set at 768 cycles (hex = x300)
--
--

4/5/2006

cfg_control_v20.doc

SYSCLK : in std_logic;
RESET : in std_logic;
WRITE_BP : in std_logic;
CS_CFG : in std_logic;
CS_TEL : in std_logic;
ADDR_BP : in std_logic_vector(7 downto 0);
DATA_BP : in std_logic_vector(15 downto 0);
ADC_DATA_READY : in std_logic;
CFG_DONE : in std_logic;
ADDR_BP_LATCH : out std_logic_vector(7 downto 0);
DATA_BP_LATCH : out std_logic_vector(15 downto 0);
SERCLK : out std_logic;
WRITE_SD : out std_logic;
RESET_CFG : out std_logic;
CFG_SEL : out std_logic_vector(2 downto 0);
CFG_STATUS : out std_logic_vector(7 downto 0));

signal write_cfg : std_logic;
signal write_cfg_delayed : std_logic;
signal clk_divide : std_logic_vector(4 downto 0);
signal cfgclk_base : std_logic;
signal cfgclk_en : std_logic;
signal reset_state_counter : std_logic_vector(5 downto 0); -- delay for the cfg_reset state
type statetype is (idle, cfg_active, tel_readback, cfg_reset);
 signal state : statetype;
signal fsm_state : std_logic_vector(2 downto 0);
signal cfg_function : std_logic_vector(2 downto 0);
signal adc_cfg_data : std_logic;

4/5/2006

cfg_control_v20.doc

 CFG_SEL <= cfg_function;
 CFG_STATUS <= '0' & cfg_function & '0' & fsm_state;
 write_cfg <= WRITE_BP and (CS_CFG or CS_TEL); -- this module is selected
 SERCLK <= cfgclk_base and cfgclk_en;

AD_latch: process(SYSCLK, WRITE_BP, ADDR_BP, DATA_BP)

 clock_divider: process(SYSCLK)

4/5/2006

cfg_control_v20.doc

 cfg_function_latch: process(SYSCLK, WRITE_BP, ADDR_BP, CS_CFG, CS_TEL)

4/5/2006

cfg_control_v20.doc

Main_FSM: process(SYSCLK, RESET)

